(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

p(0) → 0
p(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → minus(p(x), y)

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(0) → 0
p(s(z0)) → z0
minus(z0, 0) → z0
minus(z0, s(z1)) → minus(p(z0), z1)
Tuples:

MINUS(z0, s(z1)) → c3(MINUS(p(z0), z1), P(z0))
S tuples:

MINUS(z0, s(z1)) → c3(MINUS(p(z0), z1), P(z0))
K tuples:none
Defined Rule Symbols:

p, minus

Defined Pair Symbols:

MINUS

Compound Symbols:

c3

(3) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(0) → 0
p(s(z0)) → z0
minus(z0, 0) → z0
minus(z0, s(z1)) → minus(p(z0), z1)
Tuples:

MINUS(z0, s(z1)) → c3(MINUS(p(z0), z1))
S tuples:

MINUS(z0, s(z1)) → c3(MINUS(p(z0), z1))
K tuples:none
Defined Rule Symbols:

p, minus

Defined Pair Symbols:

MINUS

Compound Symbols:

c3

(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

MINUS(z0, s(z1)) → c3(MINUS(p(z0), z1))
We considered the (Usable) Rules:

p(0) → 0
p(s(z0)) → z0
And the Tuples:

MINUS(z0, s(z1)) → c3(MINUS(p(z0), z1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = [4]   
POL(MINUS(x1, x2)) = [4]x2   
POL(c3(x1)) = x1   
POL(p(x1)) = [5]   
POL(s(x1)) = [2] + x1   

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

p(0) → 0
p(s(z0)) → z0
minus(z0, 0) → z0
minus(z0, s(z1)) → minus(p(z0), z1)
Tuples:

MINUS(z0, s(z1)) → c3(MINUS(p(z0), z1))
S tuples:none
K tuples:

MINUS(z0, s(z1)) → c3(MINUS(p(z0), z1))
Defined Rule Symbols:

p, minus

Defined Pair Symbols:

MINUS

Compound Symbols:

c3

(7) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(8) BOUNDS(O(1), O(1))